Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 174: 116448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522241

RESUMEN

BACKGROUND: The roots and rhizomes of Nardostachys jatamansi DC. are reported to be useful for the treatment of Parkinson's disease (PD). Previous research has also shown that Nardosinone, the main active component isolated from Nardostachys jatamansi DC., exhibits the potential to treat PD. AIM OF THE STUDY: To investigate how the effects of Nardosinone could assist levodopa in the treatment of PD, how this process changes the intestinal flora, and to explore the effective forms of Nardosinone in the intestinal flora. MATERIAL AND METHODS: We used behavioral experiments, and hematoxylin-eosin staining and immunohistochemical staining, to investigate the effects of a combination of Nardosinone and levodopa on rotenone-induced PD rats. In addition, we used LC/MS-MS to determine the levels of levodopa, 5-hydroxytryptamine, dopamine and its metabolite 3, 4-dihydroxyphenylacetic acid, and homovanillic acid, to investigate the effect of the intestinal flora on co-administration in the treatment of PD. LC/MS-MS was also used to detect the metabolites of Nardosinone on the gastrointestinal tract and intestinal flora. RESULTS: The behavioral disorders and neuronal damage associated with PD were significantly improved following the co-administration. Analysis also revealed that the co-administration increased the levels of five neurotransmitters in the striatum, plasma and feces. In vitro experiments further demonstrated that the levels of dopamine and levodopa were increased in the intestinal flora. In total, five metabolites of Nardosinone were identified. CONCLUSION: Our findings indicate that Nardosinone and its metabolites might act as a potential adjutant to enhance the efficacy of levodopa via the intestinal flora, thus expanding the therapeutic potential of the combination of Chinese and Western medicine as a treatment method for PD.


Asunto(s)
Microbioma Gastrointestinal , Levodopa , Enfermedad de Parkinson , Ratas Sprague-Dawley , Levodopa/farmacología , Animales , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Ratas , Microbioma Gastrointestinal/efectos de los fármacos , Antiparkinsonianos/farmacología , Rotenona/farmacología , Nardostachys/química , Dopamina/metabolismo , Conducta Animal/efectos de los fármacos
2.
J Ethnopharmacol ; 321: 117539, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056541

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax Notoginseng (PN) can disperse blood stasis, hemostasis, and detumescence analgesic, which can be used for hemoptysis, hematemesis and another traumatic bleeding, and it is known as "A miracle hemostatic medicine". Studies show that the chemical composition of PN is relatively comprehensive, however, its hemostatic active ingredients have not been fully clarified. AIM OF STUDY: This study aimed to clarify the hemostatic effective components group (HECG) of PN, provide a foundation for the assessment of PN's quality and its comprehensive development, and for further studies on the pharmacodynamic material basis of other Traditional Chinese Medicines (TCMs). MATERIALS AND METHODS: UPLC-MS was used to establish the fingerprint and identify the common peaks in 44 batches of PN extracts (PNE). In addition, the plasma recalcification time and in vitro coagulation time were measured. For spectrum-effect analysis, bivariate correlation analysis (BCA) and partial least squares regression analysis (PLSR) were used to screen the hemostasis candidate active monomers of PN. The monomers were prepared by combining several preparative chromatography techniques. The efficacy was verified by plasma recalcification time, in vitro coagulation time, and a rat model of gastric hemorrhage. RESULTS: A total of 30 common peaks and hemostatic efficacy indexes of 44 batches of PNE were obtained. A total of 18 components were positively correlated with the comprehensive coagulation index by two statistical methods. Six and eleven monomers were obtained respectively by chromatographic preparation and procurement, and one monomer was eliminated due to preparation difficulty and other reasons. Seven active monomers with direct hemostatic effect and one active monomer with synergistic hemostatic effect were screened through plasma recalcification time, and their combinations were used as candidate HECG for hemostatic effect verification. The results of in vitro experiments showed that plasma recalcification time and in vitro coagulation time were significantly reduced (P < 0.05) in the HECG group, compared to the PNE group. The results of in vivo experiment also indicated that the hemostatic effect of HECG was comparable to that of PNE and PN powder. CONCLUSION: The composition and efficacy of the HECG of PN were screened and verified using the spectral correlation method and in vivo and in vitro efficacy verification; the HECG included Dencichine, Ginsenoside Rg1, Ginsenoside Rd, Ginsenoside Rh1, Ginsenoside F1, Notoginsenoside R1, Notoginsenoside Ft1 and Notoginsenoside Fe. These results laid a foundation for the quality evaluation of PN and provided a reference for the basic research of pharmacodynamic material basis of other TCMs.


Asunto(s)
Ginsenósidos , Hemostáticos , Panax notoginseng , Panax , Saponinas , Ratas , Animales , Ginsenósidos/farmacología , Panax notoginseng/química , Hemostáticos/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hemostasis , Cromatografía Líquida de Alta Presión/métodos , Panax/química , Saponinas/farmacología
3.
Front Aging Neurosci ; 15: 1285549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076535

RESUMEN

Background: Alzheimer's disease (AD) is a multifactorial neurodegenerative condition. The search for multi-target traditional Chinese medicines or ingredients for treating AD has attracted much attention. Corydalis rhizome (CR) is a traditional Chinese medicine. Its main components are alkaloids, which have therapeutic effects that can potentially be used for treating AD. However, no systematic study has been conducted to explore the anti-AD efficacy of CR, as well as its active compounds and mechanisms of action. Objective: The present study aimed to clarify CR's active constituents and its pharmacological mechanisms in treating AD. Methods: A D-galactose & scopolamine hydrobromide-induced AD mouse model was used and CR was administered orally. The prototypical alkaloid components were identified in the serum. The core components, key targets, and possible mechanisms of action of these alkaloids were revealed through network pharmacology. Molecular docking of the key target was performed. Finally, the mechanism was validated by lipopolysaccharide (LPS)-induced activation of BV2 microglia. Results: The results showed that CR improved anxiety-like behavior, spatial and non-spatial recognition, and memory capacity in AD mice. It also achieved synergistic AD treatment by modulating neurotransmitter levels, anti-neuroinflammation, and anti-oxidative stress. The core components that enhance CR's efficacy in treating AD are protoberberine-type alkaloids. The CR may induce the polarization of LPS-activated BV2 microglia from phenotype M1 to M2. This is partially achieved by modulating the IL-6/JAK2/STAT3 signaling pathway, which could be the mechanism by which CR treats AD through anti-inflammation. Conclusion: The present study provided a theoretical and experimental basis for the clinical application of CR in treating AD. It also provides information that aids the secondary development, and precise clinical use of CR.

4.
Phytother Res ; 37(9): 4149-4165, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37300355

RESUMEN

Anxiety disorder is a chronic and disabling psychiatric disorder that is more prevalent in females than in males. 11-Ethoxyviburtinal is an iridoid extracted from Valeriana jatamansi Jones, which has anxiolytic potential. The aim of the present work was to study the anxiolytic efficacy and mechanism of 11-ethoxyviburtinal in gender-specific mice. We first evaluated the anxiolytic-like efficacy of 11-ethoxyviburtinal in chronic restraint stress (CRS) mice of different sexes through behavioral experiments and biochemical indexes. In addition, network pharmacology and molecular docking were used to predict potential targets and important pathways for the treatment of anxiety disorder with 11-ethoxyviburtinal. Finally, the influence of 11-ethoxyviburtinal on phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, estrogen receptor ß (ERß) expression, and anxiety-like behavior in mice was verified by western blotting, immunohistochemistry staining, antagonist intervention methods, and behavioral experiments. 11-ethoxyviburtinal alleviated the anxiety-like behaviors induced by CRS and inhibited neurotransmitter dysregulation and HPA axis hyperactivity. It inhibited the abnormal activation of the PI3K/Akt signaling pathway, modulated estrogen production, and promoted ERß expression in mice. In addition, the female mice may be more sensitive to the pharmacological effects of 11-ethoxyviburtinal. 11-ethoxyviburtinal may exert its anxiolytic-like effects through PI3K/Akt and E2/ERß signaling pathways. Meanwhile, by comparing the male and female mice, gender differences may affect the therapy and development of anxiety disorder.


Asunto(s)
Ansiolíticos , Proteínas Proto-Oncogénicas c-akt , Ratones , Masculino , Animales , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor beta de Estrógeno/metabolismo , Ansiolíticos/farmacología , Sistema Hipotálamo-Hipofisario , Simulación del Acoplamiento Molecular , Sistema Hipófiso-Suprarrenal/metabolismo , Transducción de Señal , Ansiedad/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...